翻訳と辞書
Words near each other
・ Dirichlet boundary condition
・ Dirichlet character
・ Dirichlet conditions
・ Dirichlet convolution
・ Dirichlet density
・ Dirichlet distribution
・ Dirichlet eigenvalue
・ Dirichlet eta function
・ Dirichlet form
・ Dirichlet integral
・ Dirichlet kernel
・ Dirichlet L-function
・ Dirichlet problem
・ Dirichlet process
・ Dirichlet series
Dirichlet space
・ Dirichlet's approximation theorem
・ Dirichlet's energy
・ Dirichlet's principle
・ Dirichlet's test
・ Dirichlet's theorem
・ Dirichlet's theorem on arithmetic progressions
・ Dirichlet's unit theorem
・ Dirichlet-multinomial distribution
・ Dirichletia
・ Dirick Carver
・ Dirico
・ Dirico Airport
・ Diridavumab
・ Diridon Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dirichlet space : ウィキペディア英語版
Dirichlet space
In mathematics, the Dirichlet space on the domain \Omega \subseteq \mathbb, \, \mathcal(\Omega) (named after Peter Gustav Lejeune Dirichlet), is the reproducing kernel Hilbert space of holomorphic functions, contained within the Hardy space H^2(\Omega), for which the ''Dirichlet integral'', defined by
: \mathcal(f) := \iint_\Omega |f^\prime(z)|^2 \, dA = \iint_\Omega |\partial_x f|^2 + |\partial_y f|^2 \, dx \, dy
is finite (here ''dA'' denotes the area Lebesgue measure on the complex plane \mathbb). The latter is the integral occurring in Dirichlet's principle for harmonic functions. The Dirichlet integral defines a seminorm on \mathcal(\Omega). It is not a norm in general, since \mathcal(f) = 0 whenever ''f'' is a constant function.
For f,\, g \in \mathcal(\Omega), we define
:\mathcal(f, \, g) : = \iint_\Omega f'(z) \overline \, dA(z).
This is a semi-inner product, and clearly \mathcal(f, \, f) = \mathcal(f). We may equip \mathcal(\Omega) with an inner product given by
: \langle f, g \rangle_ := \langle f, \, g \rangle_ + \mathcal(f, \, g) \; \; \; \; \; (f, \, g \in \mathcal(\Omega)),
where \langle \cdot, \, \cdot \rangle_ is the usual inner product on H^2 (\Omega). The corresponding norm \| \cdot \|_ is given by
: \|f\|^2_ := \|f\|^2_ + \mathcal(f) \; \; \; \; \; (f \in \mathcal (\Omega)).
Note that this definition is not unique, another common choice is to take \|f\|^2 = |f(c)|^2 + \mathcal(f), for some fixed c \in \Omega .
The Dirichlet space is not an algebra, but the space \mathcal(\Omega) \cap H^\infty(\Omega) is a Banach algebra, with respect to the norm
: \|f\|_ := \|f\|_ + \mathcal(f)^ \; \; \; \; \; (f \in \mathcal(\Omega) \cap H^\infty(\Omega)).
We usually have \Omega = \mathbb (the unit disk of the complex plane \mathbb), in that case \mathcal(\mathbb):=\mathcal, and if
: f(z) = \sum_ a_n z^n \; \; \; \; \; (f \in \mathcal),
then
: D(f) =\sum_ n |a_n|^2,
and
: \|f \|^2_\mathcal = \sum_ (n+1) |a_n|^2.
Clearly, \mathcal contains all the polynomials and, more generally, all functions f, holomorphic on \mathbb such that f' is bounded on \mathbb.
The reproducing kernel of \mathcal at w \in \mathbb \setminus \ is given by
: k_w(z) = \frac \setminus \).
==See also==

*Banach space
*Bergman space
*Hardy space
*Hilbert space

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dirichlet space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.